Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-9, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493517

RESUMO

Menispermi Rhizoma is the dried rhizome of Menispermum dauricum DC. (Menispermaceae), which commonly used to treat sore throat, enteritis, and dysentery in traditional Chinese medicine. To clarify the chemical basis of the total alkaloids of M. Rhizoma, HPLC was used to analyze total alkaloids, and then representative chemical constituents were separated by tracking. Nineteen compounds, including two new alkaloids (1R-methymenidaurine A-α-N-oxide (1) and 1R-7'-hydroxymethyl-menidaurine A (2)), thirteen known alkaloids, and four known flavonoids were isolated and identified using spectroscopic methods. Meanwhile, seven characteristic peaks were identified from the total alkaloids using HPLC analysis. Furthermore, compounds 1-18 were screened in vitro for their inhibitory effect against nitric oxide production in BV-2 microglia cells stimulated by lipopolysaccharide. Among them, six compounds showed weak inhibition, and the IC50 values of compounds 1 and 2 were 56.87 ± 1.61 and 53.67 ± 1.52 mM, respectively.

2.
Nat Prod Res ; 36(17): 4498-4501, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34629007

RESUMO

Rhododendron Molle G. Don belongs to Ericaceae family. As a toxic traditional Chinese medicine, its roots, flowers, and fruit are often mixed and substituted arbitrarily to treat rheumatoid arthritis in clinic. To clarify the main chemical basis of each medicinal part, and provide sufficient scientific basis for clinical application, analysis using HPLC-ELSD of the roots, flowers, and fruit from R. molle was established, and characteristic chemical constituents of them were separated by tracking. The structures were determined by NMR methods. Finally, 16, 21, and 18 compounds were obtained from the roots, flowers, and fruit, respectively. Overall, 49 compounds were obtained, of which 25 were identified for the first time in R. molle. Meanwhile, among the obtained compounds, 12, 11, and 6 characteristic peaks were identified from the roots, flowers, and fruit, respectively. Thus, the basic chemical substances of the medicinal parts of R. molle were determined initially.


Assuntos
Rhododendron , Cromatografia Líquida de Alta Pressão , Flores/química , Medicina Tradicional Chinesa , Raízes de Plantas , Rhododendron/química
3.
J Phys Chem B ; 118(29): 8691-9, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24964079

RESUMO

Molecular dynamics simulations in conjunction with multiscale shock technique (MSST) are performed to study the initial chemical processes and the anisotropy of shock sensitivity of the condensed-phase HMX under shock loadings applied along the a, b, and c lattice vectors. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. Our results show that there is a difference between lattice vector a (or c) and lattice vector b in the response to a shock wave velocity of 11 km/s, which is investigated through reaction temperature and relative sliding rate between adjacent slipping planes. The response along lattice vectors a and c are similar to each other, whose reaction temperature is up to 7000 K, but quite different along lattice vector b, whose reaction temperature is only up to 4000 K. When compared with shock wave propagation along the lattice vectors a (18 Å/ps) and c (21 Å/ps), the relative sliding rate between adjacent slipping planes along lattice vector b is only 0.2 Å/ps. Thus, the small relative sliding rate between adjacent slipping planes results in the temperature and energy under shock loading increasing at a slower rate, which is the main reason leading to less sensitivity under shock wave compression along lattice vector b. In addition, the C-H bond dissociation is the primary pathway for HMX decomposition in early stages under high shock loading from various directions. Compared with the observation for shock velocities V(imp) = 10 and 11 km/s, the homolytic cleavage of N-NO2 bond was obviously suppressed with increasing pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...